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Three-stage pseudo-supercritical transformation path and multiple-histogram reweighting technique
are employed for the determination of solid-liquid coexistence of the Lennard-Jones (12-6) fluid, in
a structureless cylindrical pore of radius, R, ranging from 4 to 20 molecular diameters. The Gibbs
free energy difference is evaluated using thermodynamic integration method by connecting solid and
liquid phases under confinement via one or more intermediate states without any first order phase
transition among them. The thermodynamic melting temperature, Tm, is found to oscillate for pore
size, R < 8, which is in agreement with the behavior observed for the melting temperature in slit
pores. However, Tm for almost all pore sizes is less than the bulk case, which is contrary to the
behavior seen for the slit pore. The oscillation in Tm decays at around pore radius R = 8, and beyond
that shift in the melting temperature with respect to the bulk case is in line with the prediction of the
Gibbs-Thomson equation. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4876077]

I. INTRODUCTION

The melting/freezing phenomena of confined fluids play
an important role in nature as in frost heaving, weather-
ing of rocks,1 and biology.2 Further, it is relevant to var-
ious fields of modern technology such as micro-fluidics,
fabrication of nanomaterials, adhesion, nanotribology, and
nanotechnology.3 Hence, various studies have been con-
ducted in order to understand the solid-liquid transition under
confinement.4

It is well known that, in presence of surfaces, the
competition between fluid–wall and fluid–fluid interac-
tions can lead to interesting phenomena.5–7 Examples in-
clude, capillary condensation,8–10 shift in vapor-liquid critical
temperature,11–15 anomalous variation in vapor-liquid critical
density, prewetting,16 layering, and wetting transition.17 On
the other hand, the freezing temperature can get suppressed
or enhanced under confinement,7, 18–22 as seen in numerous
experiments.6, 23–33 For example, depression in the freezing
temperature is observed for oxygen in sol–gel glasses of pore
size distribution 2.2–18.7 nm.28 Similarly, the freezing and
melting temperatures of indium are less compared to the bulk
value, and vary inversely with pore diameter in porous sil-
ica glasses.24 In contrast to these results for glasses, a signif-
icant increase in the melting temperature is reported for cy-
clohexane and octamethylcyclotetrasiloxane in mica pore.25

The pore size dependent shift in the melting temperature of
water in cylindrical silica nanopores, estimated using differ-
ential scanning calorimetry, is well represented by the Gibbs-
Thomson equation, and the hysteresis associated with the
phase transition is found to disappear near a pore diameter
≈2.8 nm.34

Numerous molecular simulation techniques have been
implemented to understand the freezing and melting behav-
ior of confined molecular systems.4, 5, 35, 36 In case of bulk

a)Author to whom correspondence should be addressed. Electronic mail:
jayantks@iitk.ac.in

solid, heuristic methods such as Lindemann parameter,37, 38

Born criteria (bulk),39 non-Gaussian parameter37 have been
used successfully. In other cases, structural parameters, such
as static order parameter,40 structure factor,7, 41–44 radial dis-
tribution function, and orientational correlation function20, 45

are most commonly used parameters for determination of the
melting/freezing temperature. On the other hand, solid-liquid
coexistence temperature in confinement can be evaluated ef-
fectively and accurately from free energy difference using
thermodynamic integration20, 46, 47 for simple systems.

The freezing/melting behavior of confined fluids has been
related to the variation in the ratio of wall–fluid and fluid–
fluid interactions based on the Landau theory and order pa-
rameter formulation.46, 48 Earlier studies5, 7, 22, 25, 28, 47 on con-
fined solid in slit pore showed that the elevation and depres-
sion of the melting/freezing temperatures are inversely pro-
portional to the slit separation. On the other hand, recent
works of Kaneko et al.22 and Wan et al.49 report an oscilla-
tory behavior of the melting and freezing temperatures with
the pore size. Oscillatory nature of the melting temperature is
also observed in our earlier work.18 These results question an
earlier believed linear nature of the melting/freezing temper-
ature with inverse of the pore size, and its extensibility to ex-
tremely narrow pores. In our previous work, we have reported
the thermodynamic melting transition of Lennard-Jones solid
in confined slit pores, based on a free-energy approach.19

We also observed that at higher pore sizes, the melting phe-
nomenon follows the Gibbs-Thomson equation. However, it is
not clear if the observation seen for the slit pore also holds for
higher degree of confinement, i.e., cylindrical and spherical
confinement.

The effects of the cylindrical confinement on the freez-
ing/melting of simple fluids have been studied using ex-
periments and molecular simulation.20, 45, 50 Molecular dy-
namics simulations have been used to understand the solid-
liquid transition of hard sphere51 and square-well fluids.52

In addition, earlier works have focused on understanding the
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structural properties,51, 53 capillary condensation,9, 10 and den-
sity profile16, 54 for simple systems. However, insight into
the behavior of solid-liquid coexistence temperature in cylin-
drical pores20, 45, 50 have been less traced, and still not well
characterized. In addition, the relationship between pore size
and melting temperature is still not clear, and validity of the
Gibbs-Thomson equation for extremely narrow pore is yet to
be verified. To address the above, in this work, we extend
the methodology developed recently based on pseudo-critical
transformation path along with multiple histogram reweight-
ing (MHR)19 to locate the thermodynamic melting tempera-
ture of a LJ solid in cylindrical pores, ranging from 4 to 20
molecular diameters in radius. The rest of the paper is or-
ganized as follows. The model and method are described in
Sec. II. In Sec. III, some details of the simulations are pro-
vided, and in Sec. IV, the results are presented and discussed.
Finally, concluding remarks are presented in Sec. V.

II. MODEL AND METHODS

A. Potential models

The fluid–fluid interaction is modeled by the truncated
and shifted LJ potential:

Utr−sh
ff =

{
U

lj

ff (r) − U
lj

ff (rc) r ≤ rc
0 r> rc

, (1)

where

U
lj

ff (r) = 4εff

[(σff

r

)12
−

(σff

r

)6
]

,

where σ ff is the particle diameter, εff is the interaction well
depth, and r is the distance between two particles. Cut-off ra-
dius, rc, is fixed at 5σ ff.

In this work, the pore is modeled as a structureless cylin-
drical pore. The cylindrical boundary is generated by putting
a concentric cylinder inside an orthogonal simulation box,
where the particles are initially packed, but cropped out based
on the boundary of curved surface of the cylinder. This is
followed by an equilibration run at a given temperature and
pressure (see Figure 1). The type of interaction potential is a
cylindrical analog of a graphitic slit pore,55, 56 where interac-
tion between the wall and a fluid particle at a distance r is de-
fined by LJ 9-3 potential.6 The potential form is as follows:55

Uwf (r) = 2

3
πρwεwf σ 3

wf

[
2

15

(σwf

r

)9
−

(σwf

r

)3
]

, (2)

where ρw is the number density of atoms in the wall, the
subscripts f and w represent fluid and wall, respectively. σwf

and εwf are the cross parameters for the wall-fluid interaction.
In this work, we fix σ ff = 1, εff = 1, σww = 0.8924, εww

= 0.1891, ρw = 6.3049, σwf = (σ ff + σw)/2, and εwf = (εff

εww)0.5, as per Refs. 7 and 19. The strength of interaction of
the wall-fluid relative to the fluid-fluid interaction is define by
the coefficient, α = ρwεwf σ 3

wf /εff , which is fixed at 2.32. LJ
9-3 pore radius is varied from 4 to 20 molecular diameters. In
this work, all quantities are reduced with respect to σ ff and εff.

FIG. 1. Snapshots of constructing simulations of particles confined in cylin-
drical pores: (a) initial generation of FCC packing at high density in orthog-
onal shape in accordance with required size, (b) remove particles outside of
the cylindrical pore, (c) randomly remove additional particles to satisfy the
density, and (d) perfect cylindrical pore shape after few equilibrium simula-
tion run. The top row represents the cross-sectional view and the bottom row
presents the side view.

B. Simulation methodologies

In this work, we extend the method employed for slit
pores to cylindrical pores. The detailed methodology is given
in Refs. 19 and 57. However, we present briefly the method
for the sake of completion, and to provide modifications nec-
essary to adapt the method for cylindrical pores.

The estimation of melting temperature from free energy
analysis comprising four steps: (a) estimation of an approxi-
mate melting temperature from a thermal cycle; (b) computa-
tion of equation of state for the solid and liquid phases using
multiple-histogram reweighting method at a reference state
point; (c) the determination of difference in free energy be-
tween solid and liquid phases at an approximate melting tem-
perature using the pseudo-supercritical transformation path;
(d) and finally, using steps (b) and (c), evaluating the melt-
ing temperature where Gibbs free energy is zero. Each step is
described below in detail.

1. Estimation of an approximate melting point

To locate an approximate melting point, we progressively
heat and quench solid and liquid phases, respectively, using
an isothermal-isobaric ensemble (NPzzAT) at Pzz = 1.0. Sub-
sequently, the approximate melting point is selected within
the hysteresis loop at which an abrupt change in the density is
observed.

2. Solid and liquid equation of state

The second step is the generation of the Gibbs free
energy as a function of temperature for the solid and liq-
uid phases with respect to their respective reference state
point over a small temperature range around the approximate
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melting temperature at a constant pressure. With the help of
free energy difference between the two phases, at the approxi-
mate melting temperature, the pure phase relative free energy
curves can be converted to the solid-liquid free energy differ-
ence as a function of temperature. This further can be used
to estimate the temperature where the free energy is equal for
both the solid and liquid phases. This is done using the MHR
technique.19, 57–63

3. Determination of solid-liquid free energy difference
at the approximate melting temperature

The Helmholtz free energy difference between the solid
and liquid phases at an approximate melting temperature is
computed by constructing a reversible thermodynamic path
between the solid and liquid phases through one or more
intermediate states.64 The free energy along this pseudo-
supercritical path is computed with a standard thermodynamic
integration procedure:

�Aex =
∫ 〈

dU

dλ

〉
NV T λ

dλ, (3)

where �Aex is the difference in excess Helmholtz free energy
and λ is the Kirkwood’s coupling parameter. Typically λ vary
from zero to 1 such that when λ = 0 system act as a reference
state, and angled bracket indicates the NVT ensemble aver-
age for a particular value of λ. The schematic representation
of three-stage pseudo-supercritical transformation path is pre-
sented in Fig. 2. Brief description of the steps is given below.

a. Stage-a In the first step, fully interacting liquid is
transferred to a weakly interacting fluid by means of a cou-
pling parameter λ, which scales intermolecular interactions in
the following manner:

Ua(λ) = [1 − λ(1 − η)]Uinter (rN ) + φf w, (4)

where Uinter(rN) is the intermolecular potential energy based
on the positions of all N particles, φfw represents potential

FIG. 2. The schematic representation of the three-stage pseudo-supercritical
transformation path for the cylindrical confined system. (a) The liquid phase
is converted to a weakly interacting fluid by gradually reducing the inter-
molecular interactions. (b) Gaussian potential wells are turned on while the
volume is reduced to achieve a weakly interacting ordered phase. (c) Gaus-
sian wells are turned off while simultaneously intermolecular interactions are
gradually restored to achieve a crystalline phase.

energy due to wall-fluid interaction, independent of coupling
parameter, and η is a scaling parameter such that 0 < η < 1.
The derivative of this function yields

∂Ua

∂λ
= − (1 − η)Uinter (rN ). (5)

b. Stage-b In the second stage, the simulation box vol-
ume is reduced from the liquid phase volume to the solid
phase volume. Hence, axial length of the cylinder (Lz) for a
given pore size must be known at the apparent melting tem-
perature, either from the MHR results or from isothermal-
isobaric simulation runs. This ensures that the pressure in the
z direction of liquid and solid phases is equal at the begin-
ning of stage-a and at the end of the transformation path. The
potential energy based on λ for this stage is

Ub(λ) = ηUinter [rN (λ)] + λUGauss

[
rN (λ), rN

well(λ)
] + φf w,

(6)
where rN(λ) and rwell

N (λ) are the Cartesian coordinates of the
particles and potential wells, respectively, which is a function
of λ due to the variable box volume. UGauss represents poten-
tial energy due to the interaction between the Gaussian poten-
tial wells and particles; and φfw represents the potential en-
ergy due to the wall-fluid interaction. To relate change in the
Cartesian coordinates to the change in box volume, we follow
the similar procedure as described in our earlier work.19

c. Stage-c This is the final stage of the pseudo-
supercritical transformation path. We now have a fluid con-
strained to the configurational space of its solid phase. The
potential energy function of this final stage as a function of λ

is

Uc(λ) = [η + (1 − η)λ]Uinter (rN )

+(1 − λ)UGauss

(
rN , rN

well

) + φf w, (7)

and the derivative is given by

∂Uc

∂λ
= (1 − η)Uinter (rN ) − UGauss

(
rN , rN

well

)
. (8)

4. Finding the temperature where �G is zero

The difference in the excess Helmholtz free energy �Aex,
between the crystalline and liquid phases, at the approximate
melting temperature, is determined in the previous steps a–
c by thermodynamic integration using three-stage pseudo-
supercritical path. It is required to convert the Helmholtz
free energy to the Gibbs free energy, which is done through
a simple relationship, �G = �Aex + �Aid + PzzA�(Lz),
where the term �Aex is yielded from the three-stage pseudo-
supercritical transformation path method, �Aid is the change
in the ideal gas contribution to the Helmholtz free energy, Pzz

is the pressure in axial direction of the pore, and A is the
cross sectional area of the pore. Additionally, the histogram
reweighting analysis yields two free energy curves. For the
liquid phase, {(βG)T1,l − (βG)Ti ,l} is known and for the solid
phase, {(βG)T1,s − (βG)Ti ,s} is known,57 where the expres-
sion (βG)Tm, n indicates (βG) for the meta-stable phase n at
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the state point Tam. Given that Tam, an approximate melting
point, is the state point at which the thermodynamic integra-
tion is conducted, the following can be obtained:

[(βG)T1,s − (βG)Tam,s] + [β(GTam,s − GTam,l)]

−[(βG)Ti ,l − (βG)Tam,l] = [(βG)T1,s − (βG)Ti ,l]. (9)

Equation (9) further can be rewritten as

[(βG)T1,s − (βG)Tam,s] + [β(GTam,s − GTam,l)]

+[(βG)T1,l − (βG)Ti ,l] − [(βG)T1,l − (βG)Tam,l]

= [(βG)T1,s − (βG)Ti ,l], (10)

where the first, third, and fourth terms on the left side of
Eq. (10) are obtained from the MHR analysis; while the sec-
ond term comes from the pseudo-supercritical path by free
energy calculation.

5. Melting temperature from kinetic approach

The Lindemann parameter and non-Gaussian parameter
are used in this work to estimate the kinetic melting temper-
ature. The Lindemann criterion65 is widely used to determine
the melting temperature of a solid. It states that melting is
a vibrational lattice instability initiated when the root-mean-
square (RMS) displacement of atoms reaches a critical frac-
tion of the inter-atomic distance:√

〈�r2〉 = δLa, (11)

where δL is the Lindemann parameter, a is the nearest neigh-
bor distance, and �r = |ri(t) − Ri|; ri is the instantaneous
position of atom i and Ri is the equilibrium position of atom i.

Large deviations of solid particles near the melt-
ing temperature can be expressed using the non-Gaussian
parameter:

α2(t) = 〈�r4〉
(1 + 2/d)〈�r2〉2

− 1. (12)

Here, d is the spatial dimension and 〈···〉 denotes ensemble
averaging.

The value of α2(t) is very small, and is weakly dependent
on temperature at lower temperatures. At a certain temper-
ature, α2(t) suddenly jumps as a result of the strong devia-
tion of atoms from their equilibrium lattice position. This is
an indication of the melting temperature. Subsequently, α2(t)
drops to zero, when crystal loses its crystallinity completely,
in a random liquid.37, 66, 67 The non-Gaussian parameter can
be used to detect the melting point of a solid, as shown by Jin
et al.37 Moreover, it along with the Lindemann parameter can
also be used to detect the melting point of simple solids in slit
pores, albeit not for very attractive pore.18

III. SIMULATION DETAILS

The thermodynamic melting temperature is evaluated
where the Gibb’s free energy difference between the solid and
liquid phases is equal to zero. First, we select an approximate
melting temperature, Tam, by performing two different types
of NPzzAT simulation using LAMMPS.68 The velocity-Verlet

algorithm is used to integrate the equation of motion with a
time step, �t = 4 fs. The temperature and pressure are con-
trolled using a Nosé–Hoover thermostat and barostat69 with
relaxation times of 2 ps and 5 ps for temperature and pressure,
respectively. Approximately 4000–60 000 particles are used,
depending on the pore size. Truncated and shifted potential is
used with a cutoff radius of 5σ for both the particle-particle
and wall-fluid interactions. The periodic boundary condition
is employed in the axial direction (z direction) of the cylindri-
cal pore. The pressure component along the periodic dimen-
sion, Pzz, is kept fixed to unity. To construct the Gibbs free
energy curves of the crystalline and liquid phases under con-
finement, using MHR, histograms are collected from NPzzAT
molecular dynamics simulations. We perform 11 simulations
for each phase. The temperature for each simulation is chosen
according to the following relationship:

Ti = Tam +
5∑

n=−5

n�T ,

where Tam is the approximate melting temperature estimated
from the hysteresis data; �T is chosen in accordance with the
meta-stable region.

The initial configurations for solid-phase or liquid phase
simulations are taken from the NPT simulation run used for
hysteresis analysis. After sufficient equilibration, for around
200 ps, simulations are conducted for an additional 10 ns. The
reference state points are selected at the lowest temperature,
Ti = Tam − 5�T. The system’s potential energy U and volume
V are recorded at every time step, and these data are converted
into histograms.

The thermodynamic integration calculations, during the
three-stage pseudo-supercritical path, are conducted using
NVT molecular dynamics. The temperature is maintained us-
ing Nosé-Hoover thermostat algorithm. The Gaussian poten-
tial well parameters are chosen as per Grochola.64 The value
of the scaling parameter is kept fixed at η = 0.1.57

Simulations for the first stage of the transformation path
are started from a random initial configuration (i.e., λ = 0),
which is obtained during thermal cycle runs. Subsequently for
each λ initial configuration is taken from its previous λ sim-
ulation. For all the three stages time step is fixed at 4 fs, and
total simulation run for each λ is 20 ns. For the second stage,
stage b, we take the last configuration of the stage-a as the ini-
tial configuration. However, to obtain the final configuration
we put dummy atoms on the crystal lattice obtained from the
heating cycle run. In order to assess the error for this stage we
have considered 3–4 initial crystal configurations (obtained
from the hysteresis runs). The Gaussian potential wells are
attached to these dummy atoms. The initial configuration for
the third stage is taken from the heating run of hysteresis loop
at Tam and the dummy atoms are created as described for the
second stage. Thermodynamic integration is conducted using
the standard ten point Gauss-Legendre integration scheme for
all the stages. Block average is used to obtain the error in the
data points.
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IV. RESULTS AND DISCUSSION

In our previous note19 we discussed the thermodynam-
ics meting temperature in slit pores. It was found that melt-
ing temperatures at larger slit pore with width >10 obey the
Gibbs-Thomson equation. However, melting temperature is
oscillatory in nature for narrower pores of size less than 10.
This phenomenon in slit pores has attracted our attention
towards cylindrical pores. We first discuss the possibilities
of evaluating the melting temperature using the kinetic ap-
proach. Figure 3 presents the non-Gaussian and Lindemann
parameters with temperature. In case of pore size with pore
radius, R = 6, non-Gaussian parameter exhibits multiple max-
imum over a wide temperature range, making it impossible to
use the data to obtain any reasonable estimate of the melt-
ing temperature. Hence, it is difficult to determine the melt-
ing temperature in cylindrical confinement for lower pore size
from the kinetic approach unlike the case of slit pores.18 How-
ever, for higher pore size, non-Gaussian parameter can be im-
plemented as shown for R = 12 in Fig. 3(bottom panel). On
the other hand, the application of Lindemann parameter to
estimate the melting temperature completely depends on its
crystal structure, and does not agree with the value estimated
from the non-Gaussian parameter. Hence the kinetic approach
suffers from various problems to locate the melting tempera-
ture in cylindrical confinement.

Now, we turn our attention to the thermodynamics ap-
proach to evaluate the melting temperature in cylindrical
pores. As earlier mentioned, the first step of evaluating the
true thermodynamic melting temperature is to determine an
approximate melting temperature, which is done using hys-
teresis loop along the phase transition. We first calculate the
overall density of the confined system along the quenching

FIG. 3. The Lindemann parameter, δL, and non-Gaussian parameter, α2(t),
as a function of temperature. Vertical dashed arrow line from the bottom in-
dicates the melting temperature, where α2(t) is maximum. Firm horizontal
arrow lines represent the corresponding axes. Horizontal dotted line indicates
the critical Lindemann parameter. Presence of multiple high peaks makes it
hard to evaluate the melting point for lower pore radius.

FIG. 4. Density as a function of temperature for solid and liquid phases at
Pzz = 1.0 for pore radius, R = 12, for εwf = 0.4348, α = 2.32. Symbols
square and circle represent quenching and heating cycles, respectively. The
solid (top curve) progressively heated from T = 0.3 to 0.81, while the liquid
(bottom) is quenched progressively from T = 1.2 to 0.3. Vertical dotted line
indicates an approximate melting temperature (Tam). Horizontal dotted lines
indicate corresponding densities of solid and liquid at Tam.

and heating paths. Figure 4 presents a plot of density as a
function of temperature for the heating and cooling cycles, for
a pore radius R = 12. As the liquid is quenched, the density
gradually increases with lowering in temperature, and from
T = 0.75 until T = 0.6 rate of increase in the density is rel-
atively high before turning again to the monotonic behavior
of increasing density with lowering in temperature. We ob-
serve a clear hysteresis loop, which for R < 4 is found to
disappear, as also experimentally observed in a recent study
of water in silica pore.34 The hysteresis loop indicates a first
order phase transition. A wide meta-stable region is observed
around the true crossover point. The melting point is adjacent
to this meta-stable region. It clearly shows that abrupt density
change or a discontinuous drop in density occurs at T ∼ 0.78,
which indicates that the true thermodynamic melting temper-
ature would be lower than this temperature. In Fig. 4 vertical
dashed line represents the approximate melting temperature
Tam = 0.69, at which free energy difference is evaluated us-
ing pseudo-supercritical transformation path. Solid and liquid
box lengths are determined from the corresponding densities
as shown by horizontal dotted lines in Fig. 4.

Figure 5 presents the density profile along the radial di-
rection for pore radius, R = 12. Figure 5 (panel (a)) illus-
trates the local density profile at various temperatures. The
local density is significantly large near the wall, even at T
= 0.78, indicative of solid like behavior of the contact layer.
With the distance away from the wall, the wall effect is di-
minished, and the density is found to reduce. In general, at
higher temperatures, heights of the peaks of the layers are
not pronounced particularly near the centre of the pore. As
temperature decreases, the heights of the peaks increase, and
for lower temperature, where the solid phase clearly appears,
sharp distinct peaks are observed. Figure 5 (panel (b)) shows
the density profiles for solid and liquid phases at the approxi-
mate melting temperature along the radial direction. Wall ef-
fect is clearly evident even in the liquid phase particularly near
the wall, indicated by the sharp peaks in the density profiles.
However, that is seen to diminish near the centre of the pore.
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FIG. 5. (a) Local density (ρL) as a function of radial distance from the centre
of the pore for R = 12.0, quenching case. The orientation of the particles
near the wall surface is ordered but disordered at the proximity of the centre
of the pore. (b) The comparison of local density profile for solid and liquid
at an approximate melting temperature (0.69). In case of liquid, particles are
ordered near the wall surface, but are disordered after few layers away from
the wall—indicative of the liquid phase. On the other hand, solid density
peaks are more pronounced throughout the pore indicative of the crystalline
phase at Tam.

This is clearly not the case for the solid phase, which shows
clear sharp peak even at the centre of the pore. We estimate

in-plane order parameter: ψk = 〈 1
Nb

|
Nb∑
j=1

exp(ikθj )|〉, where k

= 4 and 6 represent square and triangular symmetry, respec-
tively; Nb is the total number of near neighbors at a distance
of 1.5 in each layer, and θ j is the angle formed by a particle
with its nearest-neighbor atom. Table I summarizes the bond
orientation order parameters value. Contact layers indicate a
very high value of ψ6 compared to ψ4, indicative of domi-
nance of triangular symmetry in the solid phase. Even in the
liquid phase first three layers from the wall are of high or-
der, and particles in these layers are in triangular symmetry.
Figure 6 presents the local density along radial direction for
different pore radius at T = 0.69. For lower pore, R < 10, the
heights of the central peaks are more compared to that of the
higher pores. Hence, in cylindrical pore surface effect is quite

TABLE I. Bond order parameters for each layer at an approximate melting
temperature for solid and liquid phases, for pore radius R = 12.

�4 �6

R Layer Solid Liquid Solid Liquid

12 Contact layer 0.062 0.0978 0.744 0.719
2nd layer 0.099 0.034 0.780 0.739
3rd layer 0.075 0.061 0.786 0.700
4th layer 0.032 0.063 0.762 0.520
5th layer 0.073 0.052 0.728 0.245
6th layer 0.233 0.043 0.708 0.080
7th layer 0.218 0.052 0.718 0.067
8th layer 0.263 0.054 0.706 0.065
9th layer 0.374 0.056 0.579 0.068
10th layer 0.239 0.075 0.469 0.077
11th layer 0.171 0.090 0.239 0.094
Centre layer 0.289 0.164 0.242 0.159

FIG. 6. Local density (ρL) as a function of radial distance from the centre of
the pore at T = 0.69, for the heating case.

dominant and freezing in cylindrical pore is an intricate suc-
cession of transitions where different layers freeze at a wide
range of conditions. Similar kind of behavior is also observed
in earlier studies.20, 45

In order to estimate the thermodynamic melting tempera-
ture, Gibbs free energy curves are constructed taking T = 0.69
as an intermediate point of the meta-stable region. Simula-
tions are performed at 11 different temperatures, as described
earlier. For each temperature, two sets of simulations are per-
formed, viz. one for the heating case and another for the
quenching case, resulting in 22 histograms. Figure 7 presents
the Gibbs free energy curves for the solid and liquid phases
with respect to their respective reference states. The next step
is the determination of Gibbs free energy difference between
the two phases at an approximate melting temperature.

Thermodynamic integration is conducted at an approxi-
mate melting temperature along the pseudo-supercritical path,
through which solid and liquid phases are connected avoid-
ing the first order phase transition. The box lengths for solid
and liquid phases are determined from their respective den-
sities as shown in Fig. 4. The box lengths are chosen such
a way that Pzz = 1 remains constant at the beginning of the
stage-a and at the end of the stage-c which is shown in Fig. 8.
We also observed overall pressure to remain constant. Plots of

FIG. 7. Relative Gibbs free energy curves as a function of temperature for
confined Lennard-Jones system for R = 12 relative to the respective reference
states for the liquid and solid phases, constructed from MHR.
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FIG. 8. Pzz as a function of λ during the three stages, for R = 12. Pressure
at the beginning of stage-a and pressure at the end of stage-c remain same,
which is the essential characteristic for the three-stage pseudo-supercritical
transformation path.

〈∂U/∂λ〉NV T λ as function of λ for three stages of thermody-
namic integration are shown in Fig. 9, which shows that the
curves are continuous and integrable for all the three stages.
Moreover, we have also checked the reversibility of the ther-
modynamic path considered in this work. For all the three
cases error bars are of the order of symbol size. The different
contributions to the Gibbs free energy for all the pore sizes
are presented in Table II.

Once the Gibbs free energy difference of two phases,
�G, is determined at an approximate melting temperature,
it is no longer difficult to convert liquid Gibbs free energy
curve relative to a solid reference state using Eq. (10). The
two Gibbs free energy curves with respect to the solid refer-
ence state point are shown in Fig. 10. Using the relative free
energy between the crystalline and liquid phases at a single
point, the free energy difference between crystalline and liq-
uid phases can be evaluated for all other points. By determin-
ing �G in this way over a range of temperatures, �G can
be presented as a function of temperature, and the tempera-
ture where �G is zero indicates a single coexistence point
or thermodynamic melting temperature, as shown in Fig. 11.
The coexistence temperature calculated using the above men-
tioned method for R = 12 is 0.745. Table II summarizes

FIG. 9. 〈∂U/∂λ〉NV T λ as a function of λ for three-stage pseudo-supercritical
transformation path for the confined Lennard-Jones system, for R = 12, at an
approximate melting temperature.

FIG. 10. Relative Gibbs free energy as a function temperature for R = 12
constructed from MHR. Both branches are relative to the solid reference state.

TABLE II. Estimated true thermodynamic melting temperature, Tm, and different contributions to the Gibbs free energy, for different pore radii, R, at an
approximate melting temperature (Tam) are presented. �G denotes Gibbs free energy difference at Tam. ρL and ρS represent corresponding densities of liquid
and solid, respectively, at Tam. By using block averaging, errors are estimated for individual data points. These errors are then integrated to estimate the final
error.

R Tam ρL ρS �Aex �Aid P�V �G Tm

Wall (LJ 9-3) εwf = 0.4348, α = 2.32

20 0.70 0.946 0.985 − 1613.47 ± 0.28 − 1545.73 2287.82 − 2355.55 0.765 ± 0.001
16 0.69 0.951 0.985 − 560.34 ± 0.34 865.71 − 1296.53 − 991.17 0.758 ± 0.001
12 0.69 0.950 1.002 − 88.55 ± 0.40 742.36 − 1102.84 − 449.03 0.745 ± 0.001
10 0.69 0.944 0.972 29.61 ± 0.47 285.72 − 432.30 − 116.96 0.735 ± 0.002
8 0.69 0.960 1.005 − 3.03 ± 0.55 277.45 − 409.39 − 134.98 0.722 ± 0.002
7 0.72 0.931 1.003 − 1.63 ± 0.64 362.27 − 520.82 − 160.19 0.762 ± 0.002
6 0.72 0.916 0.984 − 1.57 ± 0.75 258.60 − 378.43 − 121.41 0.754 ± 0.002
5 0.75 0.938 0.971 − 1.46 ± 0.98 88.66 − 123.87 − 36.67 0.769 ± 0.002
4 0.72 0.894 0.945 − 4.92 ± 1.11 82.95 − 125.41 − 4739 0.747 ± 0.004
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FIG. 11. �G as a function of T for R = 12. Vertical arrow dashed line in-
dicates solid-liquid coexistence temperature or true thermodynamic melting
temperature (Tm) of solid.

different contributions to the Gibbs free energy and the esti-
mated true thermodynamic melting temperatures for different
pore sizes.

In this work, we have observed depression of the melt-
ing temperature under cylindrical confinement. However, no
specific relation is found for the melting temperature with the
pore size. Instead, oscillatory nature of the melting temper-
ature, for narrow pores, is seen similar to the behavior ob-
served by earlier worker using different methods.22, 48, 49 In-
terestingly, depression of the melting temperature, with re-
spect to the bulk value, is observed for almost all pore radii
(see Table II). In our earlier work in slit pore, for strong wall-
fluid interaction (α = 2.32),18 we have reported elevation and
depression in the kinetic temperature depending on the pore
size. However, for the case of thermodynamic melting tem-
perature, elevation is observed. Interestingly, in this work we
observe only depression in the thermodynamic melting tem-
perature compared to that of the bulk solid. It is now clear
that the oscillatory behavior in the melting temperature (ki-
netic or thermodynamic) in narrow pores is a generic behav-
ior, as also supported by our earlier works.18, 19 However, at
higher pore sizes the melting temperature is close to its bulk
value, which indicates that the effect of confinement gradually
diminishes with increasing pore radius. The melting temper-
ature at higher R > 8 is in linear relationship with inverse
of the pore size, and obeys the Gibbs-Thomson equation.
Fig. 12 presents plot of the scaled shift in Tm [(Tmc –
Tmb)/Tmb] against the inverse of pore radius, where Tmb is the

FIG. 12. Shift in the melting temperature reduced by the bulk melting tem-
perature as a function of inverse of the pore radius, R.

bulk melting temperature, and Tmc is the melting temperature
under confinement. At lower pore sizes, this equation often
fails as the reduced density of the confined fluids differs from
the bulk value.6, 31–33 We have taken bulk melting tempera-
ture as 0.765 in accordance with Eike et al.57 Based on the
results in this work, wall effect disappears beyond R = 20,
as the thermodynamic melting temperature reaches the bulk
value. This phenomenon is also supported by earlier work,45

which reported that for pore diameters greater than 20 molec-
ular diameters the confined fluids freeze into a single crys-
talline structure.

V. CONCLUSION

In this work, we have demonstrated the melting behavior
of LJ solids confined in strongly attractive cylindrical pores of
different pore radii. Thermodynamic melting temperatures of
confined LJ fluids are evaluated using a pseudo-supercritical
transformation path connecting the solid and liquid phases
without the first order phase transition along with the mul-
tiple histogram reweighting technique. Thermal cycling pro-
duces pronounced hysteresis associated with the first order
phase transition. However, hysteresis is found to disappear for
R < 4. The thermodynamic melting temperature for almost all
pore radii is lower than the bulk case, which is contrary to the
behavior seen in slit pores. The melting temperatures at lower
pore sizes are oscillatory in nature. For R > 8 the thermo-
dynamic melting temperatures are in linear relationship with
inverse of the pore radius as predicted by the Gibbs-Thomson
equation.

ACKNOWLEDGMENTS

This work was supported by the Department of Science
and Technology, Government of India.

1J. B. Murton, R. Peterson, and J.-C. Ozouf, Science 314(5802), 1127
(2006).

2M. Muthukumar, Annu. Rev. Biophys. Biomol. Struct. 36, 435 (2007).
3M. Alcoutlabi and G. B. McKenna, J. Phys.: Condens. Matter 17, R461
(2005).

4P. T. Cummings, H. Docherty, C. R. Iacovella, and J. K. Singh, AICHE J.
56(4), 842 (2010).

5L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-
Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

6C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins, R.
Radhakrishnan, and M. Sliwinska-Bartkowiak, J. Phys.: Condens. Matter
18, R15 (2006).

7M. Miyahara and K. E. Gubbins, J. Chem. Phys. 106, 2865 (1997).
8A. Z. Panagiotopolos, Mol. Phys. 62(3), 701 (1987).
9B. K. Peterson, K. E. Gubbins, G. S. Heffelfinger, U. Marini, B. Marconi,
and F. van Swo, J. Chem. Phys. 88(10), 6487 (1988).

10R. Evans, U. Marini, B. Marconi, and P. Tarazona, J. Chem. Phys. 84, 2376
(1986).

11S. K. Singh, J. K. Singh, S. K. Kwak, and G. Deo, Chem. Phys. Lett. 494,
182 (2010).

12S. K. Singh and J. K. Singh, Fluid Phase Equilib. 300, 182 (2011).
13S. K. Singh, S. Khan, S. Jana, and J. K. Singh, Mol. Simul. 37, 350 (2011).
14S. K. Singh, A. Sinha, G. Deo, and J. K. Singh, J. Phys. Chem. C 113, 7170

(2009).
15S. Jana, J. K. Singh, and S. K. Kwak, J. Chem. Phys. 130, 214707 (2009).
16P. C. Ball and R. Evans, Mol. Phys. 63(1), 159 (1988).
17L. Firlej and B. Kuchta, Mater. Sci.-Poland 24(2), 443 (2006).
18C. K. Das and J. K. Singh, Theor. Chem. Acc. 132, 1351 (2013).

http://dx.doi.org/10.1126/science.1132127
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132622
http://dx.doi.org/10.1088/0953-8984/17/15/R01
http://dx.doi.org/10.1002/aic.12226
http://dx.doi.org/10.1088/0034-4885/62/12/201
http://dx.doi.org/10.1088/0953-8984/18/6/R01
http://dx.doi.org/10.1063/1.473415
http://dx.doi.org/10.1080/00268978700102501
http://dx.doi.org/10.1063/1.454434
http://dx.doi.org/10.1063/1.450352
http://dx.doi.org/10.1016/j.cplett.2010.06.005
http://dx.doi.org/10.1016/j.fluid.2010.10.014
http://dx.doi.org/10.1080/08927022.2010.514778
http://dx.doi.org/10.1021/jp8073915
http://dx.doi.org/10.1063/1.3148884
http://dx.doi.org/10.1080/00268978800100131
http://dx.doi.org/10.1007/s00214-013-1351-y


204703-9 C. K. Das and J. K. Singh J. Chem. Phys. 140, 204703 (2014)

19C. K. Das and J. K. Singh, J. Chem. Phys. 139(17), 174706 (2013).
20M. W. Maddox and K. E. Gubbins, J. Chem. Phys. 107(22), 9659 (1997).
21T. Kaneko, K. Yasuoka, and X. C. Zeng, Mol. Simul. 38(5), 373 (2012).
22T. Kaneko, T. Mima, and K. Yasuoka, Chem. Phys. Lett. 490, 165

(2010).
23J. A. Duffy, N. J. Wilkinson, H. M. Fretwell, and M. A. Alam, J. Phys.:

Condens. Matter 7, L27 (1995).
24K. M. Unruh, T. E. Huber, and C. A. Huber, Phys. Rev. B 48(12), 9021

(1993).
25J. Klein and E. Kumacheva, Science 269, 816 (1995).
26C. A. Murray and D. H. V. Winkle, Phys. Rev. Lett. 58(12), 1200 (1987).
27Y. Tang, A. J. Armstrong, R. C. Mockler, and W. J. O. Sullivan, Phys. Rev.

Lett. 62(20), 2401 (1989).
28J. Warnock, D. D. Awschalom, and M. W. Shafer, Phys. Rev. Lett. 57(14),

1753 (1986).
29J. Klein, D. Perahia, and S. Warburg, Nature 352, 143 (1991).
30R. W. Bathelor and A. G. Foste, Trans. Faraday Soc. 40, 300 (1944).
31D. Morineau, Y. Xia, and C. Alba-Simionesco, J. Chem. Phys. 117, 8966

(2002).
32D. Morineau, R. Guegan, Y. Xia, and C. Alba-Simionesco, J. Chem. Phys.

121(3), 1466 (2004).
33C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D.

Morineau, V. Teboul, and Y. Xia, Eur. Phys. J. E 12, 19 (2003).
34S. Jähnert, F. V. Chávez, G. E. Schaumann, A. Schreiber, M. Schönhoff,

and G. H. Findenegg, Phys. Chem. Chem. Phys. 10, 6039 (2008).
35H. Dominguez, M. P. Allen, and R. Evans, Mol. Phys. 96(2), 209 (1999).
36M. Schmidt and H. Löwen, Phys. Rev. Lett. 76(24), 4552 (1996).
37Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, Phys. Rev. Lett. 87(5), 055703

(2001).
38A. V. Granato, D. M. Joncich, and V. A. Khonik, Appl. Phys. Lett. 97,

171911 (2010).
39M. Born, J. Chem. Phys. 7, 591 (1939).
40F. Delogu, J. Phys.: Condens. Matter 18(24), 5639 (2006).
41J. P. Hansen and L. Verlet, Phys. Rev. 184(1), 151 (1969).
42W. Gotze and M. Liicke, J. Low Temp. Phys. 25(5/6), 671 (1976).
43J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys. Rev. B 25(7), 4651

(1982).
44S. Ranganathan and K. N. Pathak, Phys. Rev. A 45(8), 5789 (1992).

45M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski, R. Gras, R. Radhakr-
ishnan, and K. E. Gubbins, J. Chem. Phys. 114(2), 950 (2001).

46R. Radhakrishnan, K. E. Gubbins, and M. Sliwinska-Bartkowiak, J. Chem.
Phys. 116(3), 1147 (2002).

47R. Radhakrishnan and K. E. Gubbins, J. Chem. Phys. 111(19), 9058 (1999).
48R. Radhakrishnan, K. E. Gubbins, and M. Sliwinska-Bartkowiak, J. Chem.

Phys. 112(24), 11048 (2000).
49L. Wan, C. R. Iacovella, T. D. Nguyen, H. Docherty, and P. T. Cummings,

Phys. Rev. B 86, 214105 (2012).
50M. Sliwinska-Bartkowak, F. R. Hung, E. E. Santiso, B. Coasne, G.

Dudziak, F. R. Siperstein, and K. E. Gubbins, Adsorption 11, 391 (2005).
51H. C. Huang, S. K. Kwak, and J. K. Singh, J. Chem. Phys. 130, 164511

(2009).
52C. H. Huang, W. W. Chen, J. K. Singh, and S. K. Kwak, J. Chem. Phys.

132, 224504 (2010).
53F. J. Durán-Olivencia and M. C. Gordillo, Phys. Rev. E 79, 061111 (2009).
54E. D. Glandt, J. Colloid Interface Sci. 77(2), 512 (1980).
55I. Brovchenko, A. Geiger, and A. Oleinikova, J. Chem. Phys. 120(4), 1958

(2004).
56D. W. Siderius and L. D. Gelb, J. Chem. Phys. 135, 084703 (2011).
57D. M. Eike, J. F. Brennecke, and E. J. Maginn, J. Chem. Phys. 122, 014115

(2005).
58A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
59A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
60J. Chang and S. I. Sandler, J. Chem. Phys. 118(18), 8390 (2003).
61J. Chang, A. M. Lenhoff, and S. I. Sandler, J. Chem. Phys. 120(6), 3003

(2004).
62K. Kiyohara, K. E. Gubbins, and A. Z. Panagiotopoulos, J. Phys. Chem.

106(8), 3338 (1997).
63P. B. Conrad and J. J. d. Pablo, Fluid Phase Equilib. 150–151, 51 (1998).
64G. Grochola, J. Chem. Phys. 120(5), 2122 (2004).
65F. A. Lindemann, Z. Phys. 11, 609 (1910).
66A. Rahman, Phys. Rev. 136(2A), A405 (1964).
67B. Vorselaars, A. V. Lyulin, K. Karatasos, and M. A. J. Michels, Phys. Rev.

E 75, 011504 (2007).
68S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).
69G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys.

87, 1117 (1996).

http://dx.doi.org/10.1063/1.4827397
http://dx.doi.org/10.1063/1.475261
http://dx.doi.org/10.1080/08927022.2010.539216
http://dx.doi.org/10.1016/j.cplett.2010.03.048
http://dx.doi.org/10.1088/0953-8984/7/3/003
http://dx.doi.org/10.1088/0953-8984/7/3/003
http://dx.doi.org/10.1103/PhysRevB.48.9021
http://dx.doi.org/10.1126/science.269.5225.816
http://dx.doi.org/10.1103/PhysRevLett.58.1200
http://dx.doi.org/10.1103/PhysRevLett.62.2401
http://dx.doi.org/10.1103/PhysRevLett.62.2401
http://dx.doi.org/10.1103/PhysRevLett.57.1753
http://dx.doi.org/10.1038/352143a0
http://dx.doi.org/10.1039/tf9444000300
http://dx.doi.org/10.1063/1.1514664
http://dx.doi.org/10.1063/1.1762872
http://dx.doi.org/10.1140/epje/i2003-10055-1
http://dx.doi.org/10.1039/b809438c
http://dx.doi.org/10.1080/00268979909482954
http://dx.doi.org/10.1103/PhysRevLett.76.4552
http://dx.doi.org/10.1103/PhysRevLett.87.055703
http://dx.doi.org/10.1063/1.3507897
http://dx.doi.org/10.1063/1.1750497
http://dx.doi.org/10.1088/0953-8984/18/24/006
http://dx.doi.org/10.1103/PhysRev.184.151
http://dx.doi.org/10.1007/BF00657290
http://dx.doi.org/10.1103/PhysRevB.25.4651
http://dx.doi.org/10.1103/PhysRevA.45.5789
http://dx.doi.org/10.1063/1.1329343
http://dx.doi.org/10.1063/1.1426412
http://dx.doi.org/10.1063/1.1426412
http://dx.doi.org/10.1063/1.480261
http://dx.doi.org/10.1063/1.481745
http://dx.doi.org/10.1063/1.481745
http://dx.doi.org/10.1103/PhysRevB.86.214105
http://dx.doi.org/10.1007/s10450-005-5956-x
http://dx.doi.org/10.1063/1.3120486
http://dx.doi.org/10.1063/1.3429741
http://dx.doi.org/10.1103/PhysRevE.79.061111
http://dx.doi.org/10.1016/0021-9797(80)90324-0
http://dx.doi.org/10.1063/1.1631919
http://dx.doi.org/10.1063/1.3626804
http://dx.doi.org/10.1063/1.1823371
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.63.1195
http://dx.doi.org/10.1063/1.1565329
http://dx.doi.org/10.1063/1.1638377
http://dx.doi.org/10.1063/1.473082
http://dx.doi.org/10.1016/S0378-3812(98)00275-1
http://dx.doi.org/10.1063/1.1637575
http://dx.doi.org/10.1103/PhysRev.136.A405
http://dx.doi.org/10.1103/PhysRevE.75.011504
http://dx.doi.org/10.1103/PhysRevE.75.011504
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1080/00268979600100761

